Analysis of Pseudo-Turbulence Flow Induced by Bubble Periodic Formation in Non-Newtonian Fluids

Authors

  • Wenyuan Fan School of Chemistry and Chemical Engineering, Tianjin University of Technology, No391 Binshui West Road, Xiqing District, Tianjin 300384, P.R. CHINA
  • Xiao Hong Yin School of Chemistry and Chemical Engineering, Tianjin University of Technology, No391 Binshui West Road, Xiqing District, Tianjin 300384, P.R. CHINA
Abstract:

Laser Doppler Velocimetry (LDV) has been employed to determine pseudo-turbulence characteristics of the flow field around bubble train forming in non-Newtonian caboxymethylcellulose (CMC) aqueous solution at low gas flow rate condition. The Reynolds stress and turbulent intensity of the liquid were investigated by means of Reynolds time-averaged method. The experimental results show that axial Reynolds stress rises greatly and then fluctuates slightly with the vertical height, whereas displays symmetrical Gaussian distribution in the horizontal direction; Radial Reynolds stress changes nonobviously in the vertical direction, but increases followed by a decrease in the horizontal direction. The axial turbulent intensity begins to wave to some degree with the height for near vertical axis passing through orifice center, but maintains constant within bubble channel in the horizontal direction; Radial turbulent intensity gets down with the vertical height, compared with the opposite trend of its variation with the horizontal distance.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Time-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels

The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...

full text

Drop formation in non-Newtonian fluids.

We study the pinch-off dynamics of droplets of yield stress and shear thinning fluids. To separate the two non-Newtonian effects, we use a yield stress material for which the yield stress can be tuned without changing the shear thinning behavior, and a shear thinning system (without a yield stress) for which the shear thinning can be controlled over a large range, without introducing too much e...

full text

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

full text

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 37  issue 5

pages  167- 175

publication date 2018-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023